

 $R_{0} = 0.36 \text{ m}$ a = 0.23 m A = R_{0}/a > 1.5 B_{t} = 0.3 T I_{p} = 0.1 MA

Recent progress in the TST-2 RF start-up experiments

Y. Takase for the TST-2 Group

Graduate School of Frontier Sciences The University of Tokyo

Third Kyushu Workshop on Solenoid-Free RF-Only ST Plasmas RIAM, Kyushu University, Kasuga 25-26 March 2015

Motivation and Goal of Research

• Economically competitive tokamak reactor may be realized at low aspect ratio (A = R_0/a) by eliminating the central solenoid (CS)

S. Nishio, et al., in Proc. 20th IAEA Fusion Energy Conf., FT/P7-35 (Vilamoura , 2004). 2

Formation of Advanced Tokamak Plasma without CS was Achieved
 OD JT-6011

- Is plasma current (I_p) ramp-up by LHW possible in ST?
 - \rightarrow Demonstrate on TST-2

Y. Takase, IAEA FEC 2002 3

Three Antennas used on TST-2

- excites traveling FW
- $I_{\rm p}$ driven by SW (LHW) requires mode conversion from FW to SW

excites traveling SW

 $n_{\rm II} = ck_{\rm II}/\omega$ can be varied sharper $n_{\rm II}$ spectrum

excites traveling SW •

& higher directivity

Developed in collaboration with C. P. Moeller (General Atomics, US)

Grill Antenna

Alumina

- A Ni-plated Alumina block was used as a dielectric-loaded waveguide
- LHW is excited directly by RF electric field in the toroidal direction
- $n_{||} = ck_{||}/\omega$ of the excited LHW can be varied by adjusting the phase difference between adjacent waveguides

n_{\parallel} Dependence of I_{p} and HX Spectrum (Grill Antenna)

 Highest plasma current was obtained for

 $1.5 < n_{||} < 4.5$

• Count rate of high energy photons was lower when $n_{\parallel} > 7.5$

T. Wakatsuki 6

n_{||} Dependence of I_p and HX Spectrum (Grill Antenna)

- HX spectra were compared with *I*_p held constant (but with different RF powers).
- HX flux decreased for $n_{\parallel} > 6$ even with constant I_{p} .
 - \rightarrow 1.5 $\leq n_{\parallel} \leq$ 6 are suitable for generating energetic electrons

n _{ll}	3.3	5.9	7.7
$T_{ m eff_co}$ [keV]	58±3	56±3	40±7

 HX flux is larger in the co-direction at any n_{||}

 \rightarrow asymmetric velocity distribution is formed

RF Magnetic Probe Array for *k* Measurement (Grill Antenna, ~ 1kA)

- Array can be rotated about its axis
 - to distinguish RF \tilde{B} polarization
 - to measure wavevector components
- Dominant k components excited by the antenna are $k_{\rm t} \approx 50 \text{ m}^{-1}$, $k_{\rm p} \approx 10 \text{ m}^{-1}$.
 - Measured $k_t \lesssim 10 \text{ m}^{-1}$ is much smaller (higher k_t absorbed?)

	$ ilde{B}_{ m p}$ (SW)	$ ilde{B}_{t}$ (FW)
$ k_{t} \cong k_{H} $	< 10 m ⁻¹	~ 10 m⁻¹
k _p	< 10 m ⁻¹	< 5 m ⁻¹
k _R	~ 35 m⁻¹	~ 10 m ⁻¹
k ₁	~ 35 m⁻¹	~ 10 m ⁻¹

 $k_{\parallel} = 10 \text{ m}^{-1}$ corresponds to $n_{\parallel} = 2.4$

LH Traveling Wave Antenna Based on a New Concept

Capacitively-Coupled Combline (CCC) Antenna

- sharper k spectrum
- higher wave directivity

Power and phase are monitored at 7 out of 13 elements

coil diameter: 8 mm monitored elements: 1, 2, 4, 6, 9, 11, 13

CCC Antenna Element

feeder at 50Ω input impedance

- Radiating element
 - house shaped cross section
 - chosen to reduce the stationary spatial harmonic field

Inductive rods + rod supports

- covered by shields to reduce inductive coupling and excitation of the fast wave
- Antenna consists of 13 elements
- Exhibits a band-pass filter characteristic

Measured and Calculated Pass-Band Characteristics

Numerical Simulation of LHW by COMSOL (CCC Antenna)

Wavenumber spectrum deteriorates in the presence of plasma (depends on antenna-plasma distance)
 T. Inada ¹²

Reflection by the Limiter Must be Avoided

T. Inada 13

Typical I_p Ramp-up with LHW+ECH (CCC Antenna)

T. Shinya 14

- 14

30

First Measurement of T_e in LHW Start-up Plasma (Single-Pass Thomson Scattering)

20

15

10

5

0

-5

8

0

0

Output [mV]

Output [mV]

Output [mV]

Measured $T_{\rm e}$ in plasmas ramped up to $I_{\rm p} > 10$ kA by LHW with $n_{\rm e} l \sim 10^{17} \, {\rm m}^{-2}$

Averaged scattered signals over 4 spatial channels and 26 reproducible discharges \rightarrow T_e ~ 10 eV ($\leq \pm 1$ eV)

100

Time [ns]

50

CH1 1060 nm

CH2 1055 nm

CH3 1050 nm

200

150

H. Togashi 15

250

Scaling of I_p with B_v and B_t

- I_p increases with B_v (equilibrium).
- Upper bound of I_p increases with B_t (wave accessibility).

Comparison of the Current Drive Figure of Merit

- Highest η_{CD} is obtained with the CCC antenna.
- An order of magnitude improvement in η_{CD} may be possible by suppression of edge wave power loss and fast electron loss
 → operation at higher B_t, n_e, I_p, P_{RF}, T_e
 T. Wakatsuki 17

Co/Ctr X-ray Spectra for Grill/CCC Antenna

Spatial X-ray Profiles (CCC Antenna)

Example of two-fluid equilibrium (d) Midplane Toroidal Current

Yueng-Kay Martin PENG, et al., Plasma and Fusion Research 9 3403146 (2014) K. Imamura 19

Toroidal Field Dependence of X-ray Profile (CCC Antenna)

$\begin{array}{l} \textbf{GENRAY/CQL3D Calculation} \\ \textbf{B}_{t} = 0.1 \text{ T}; \text{ I}_{p} = 12 \text{ kA}; \text{ f}_{\text{RF}} = 200 \text{ MHz}; \text{ P}_{\text{RF}} = 25 \text{ kW}; \text{ T}_{e0} = 0.1 \text{ keV} \end{array}$

21

Is Density Limit Due to Accessibility?

Is Density Limit Due to Parametric Decay?

Preparation of a Top-Launch Antenna

Collaboration with C. P. Moeller (GA)

Orbit Loss is Important at Low Ip

- CQL3D Fokker-Planck code calculation shows that the orbit loss is the dominant loss for $\rho \ge 0.2$ at $I_{p} = 10$ kA.
- Orbit loss from the core is greatly reduced at $I_p = 50$ kA.

Calculated Wave Field and Driven Current Profiles

 $n_e = 10^{18} \text{ m}^{-3}$ $B_t = 0.3 \text{ T}$ $T_e = 200 \text{ eV}$ $P_{RF} = 100 \text{ kW}$

- B_t must be higher to ensure LHW accessibility to the plasma core.
- $n_{||} = ck_{||}/\omega$ must be lower to avoid edge absorption of LHW.

collaboration with Bonoli, Wright (MIT, US)

T. Wakatsuki 26

Need for Power Supply Upgrade

In order to demonstrate ramp-up to higher I_p , power supply upgrade is needed to sustain higher B_t (~ 0.3 T) for longer duration (> 0.1 s).

Conclusions

- ST plasma initiation and I_p ramp-up by waves in the LH frequency range were demonstrated on TST-2.
 - Inductively-coupled combline antenna (FW launch), dielectric-loaded waveguide array ("grill") antenna (LHW launch), and capacitivelycoupled combline antenna (LHW launch) were used.
 - Similar I_p was obtained with different antennas for similar B_v and P_{RF} , but η_{CD} is higher with the CCC antenna because of higher n_e .
 - At low I_p (< 2 kA in TST-2), I_p is dominantly pressure-driven, and is proportional to B_v . In this regime, I_p is independent of the wave type. At higher I_p (> 5 kA in TST-2), I_p becomes mainly wave-driven. In this regime, control of the current density profile by externally excited waves should become possible.
- Various diagnostics and analysis tools are being developed to study these plasmas.

Near-Future Plans

- Coil Power Supply Upgrade
 - Sustained high field ($B_t = 0.3 \text{ T}$ for > 0.1 s) for further I_p ramp-up.
- Antenna Upgrade
 - Top-launch combline antenna.
- Wave/Turbulence Diagnostics
 - Electrostatic probe array
 - Reflectometer / interferometer-polarimeter
- Plasma diagnostics
 - Multi-pass Thomson scattering
 - EBW emission
 - Current profile measurement by Rogowski probe / magnetic probe
 - Ion flow measurement (see presentation by A. Ejiri)