QUESTにおける高周波非誘導電流駆動実験について

- 2周波数(8.2/28 GHz) 電子サイクロトロン波加熱・ 電流駆動実験についてー

- 1. 新規 28 GHz システムについて
- 2. 28 GHz 第2高調波加熱・電流駆動効果(OH 放電への重畳)
- 3. 28 GHz 単独入射実験結果
- 4. 28 GHz プラズマへの8.2 GHz 重畳入射について
- 5.【8.2 GHz + 28 GHz】2 周波数入射
 - •自発的密度ジャンプ現象
 - •高密度プラズマ放電
- 6. 8.5 GHz / 28 GHz 入射システムの検討

Non-inductive Operation in QUEST

100 kA @1MW

Gyrotron Development at Tsukuba University [28GHz]

QUEST Advanced Fusion Research Center

28 GHz gyrotron has been developed for Gamma-10/PDX projects at Tsukuba University.

Design Parameters	From T. Kariya
28GHz 1MW 1s Gyrotorn for PRC(Tsukuba)	
Frequency	28GHz
Output Power	1MW
Pulse Width	1s
Output Efficiency	35% (W/O CPD)
Beam Voltage	80kV
Beam Current	40A
MIG	triode
Cavity Oscillation mode	TE _{8,3}
Built-in Mode Converter	with
Output mode	Gaussian like
Output Window	Sapphire Single Disk
Aperture diameter 112mm	
Collector	W/O CPD
	Sweeping coils

Gyotron Development at Tsukuba University [28GHz]

QUEST Advanced Fusion Research Center

600 kW power level is available with Kyushu Univ. Power Supply. The oscillating efficiency is improved to attain more than 1MW output.

Power Supply System for 28GHz Gyrotron

50kV / 80 mA

HV(90kV) Isolation TR

The Cathode HV (75kV/25A) was prepared for a previous 170 GHz gyrotron with diode MIG gun in the TRIAM-1M tokamak experiments.

- Fast Anode HV cut within 1µs after IA OC detection
- Fast Cathode HV cut within 5.6µs after IA OC detection

Experimental Scenario

QUEST Advanced Fusion Research Center

EBWH/CD Exp. Scenario:

- 1) 1st: 8.2 GHz: production
- 2) 2nd : 28 GHz : density ramp-up
- 3) 1st : 8.2 GHz : EBWCD

ECH/CD Exp.

Plasma start-up and sustainment with assistance of 8.2 GHz injection

28GHz Gyrotron Operation in Kyushu

--- Dummy load ---

28GHz Incident Condition

WG Launcher was installed at $R \sim 1.5$ m. Cold Resonance of 28 GHz is located at $R \sim 0.32$ m.

RN//=const.

The beam is launched with rather large N// > 0.5, even for perpendicular injection.

High energetic electrons more than 40 keV were resonant or the incident 28 GHz O-mode due to the Doppler shifted effect in the one-path absorption.

2nd harmonic ECH/ECCD [Multiple Wall Effect]

Energetic electrons with more then 200 keV were resonant at the specific N//.

V

 There are anti-symmetric resonant structure in (+/-) N// spectra up to +/- 1 resulting in the relativistic and Doppler-shift effect.

2nd harmonic 28 GHz Off-axis ECCD effect

Although the plasma current has been controlled with the feedback, it began to increase by the 28 GHz injection against ⁴⁰ retarding electric field by ramp-up of the CS coil current.

Recharging phenomena in the CS coil power supply were clearly observed.

The plasma current was fully driven only by the 2nd harmonic off-axis 28 GHz injection.

54 kA Plasma Sustainment in Low Aspect Ratio Configuration

Plasma current of 54 KA was non-inductively sustained for 0.9 s by only 28 GHz injection.

Plasma shaping was almost kept for 1.3 sec (from 2.2 s to 3.5 s)

54 kA Plasma Sustainment in Low Aspect Ratio Configuration

Non-inductive Start-up and Ramp-up [28 GHz]

Density Jump in superposed 28 GHz / 8.2 GHz injections

The gas fueling was applied at t = 2.9 sec to increase the density.

The operating parameters including

the gas fueling were identical in the shots.

- The Ha intensity was kept, and R_{ax} and *a* were slightly decreased in the density jump case.
- $I_{\rm p}$ was once decreased, but was recovered finally.

 β_{p}^{*} was first decreased by the decrement of a, and secondarily by the increment of I_{p} . The plasma was self-organized to be more stable shaping, and then I_{p} was recovered in the high-density plasma. The flux signals showed inward shift of plasma current distribution, suggesting from the decrement of R_{ax} .

OUEST Advanced Fusion Research Center

QUEST Advanced Fusion Research Center

QUEST Advanced Fusion Research Center

Superposed 8.2 GHz Injection to 28GHz target plasma

QUEST Advanced Fusion Research Center

Superposed 8.2 GHz Injection to 28GHz target plasma

- 50 kA plasma was started and ramped up with the 28 GHz injection, and then the 8.2 GHz RF power was injected to the target plasma.
- The 50 kA plasma was sustained by strong B_v at $\beta_p^* \sim 1.5$ where was also stable in the density jump study.
- The density began to increase spontaneously under the stable configuration at β_p *~1.5, but was not beyond the cutoff.
- High current non-inductive EBWCD experiments are planned in spontaneous or gas fueling over dense plasmas under the stable plasma shaping.

Summary

QUEST Advanced Fusion Research Center

Bi-directional collaboration among National Institute for Fusion Science, Tsukuba Univ. and Kyushu Univ. has been begun since 2011.

2011-2012:	Preparation of Anode Power Supply System and Gyrotron Tank
2012-2013:	Installation of Gyrotron System and Transmission Line
2013-	QUEST Experiments

28 GHz Electron Cyclotron Current Drive (ECCD) effect was clearly observed in ohmically heated plasmas with feedback regulation of Center Solenoid (CS) coil current in 2nd harmonic inboard off-axis heating scenario.

In non-inductive current drive experiments only by the 28 GHz injection, 54 kA plasma current was sustained for 0.9 sec. High non-inductive plasma current of 66 kA was also attained by the 28 GHz ECH/ECCD.

Density jump across 8.2 GHz cutoff density was observed in superposed 28 GHz / 8.2 GHz injections.

The 50 kA plasmas were sustained by the 8.2 GHz injection to the 28 GHz target plasma if the stable plasma shaping was obtained.

8.5 GHz / 28 GHz システムを用いた新たな実験

1.87 インチ/35.1mm 1.382インチ

Y

High Density Plasma in 28 GHz and 8.2 GHz injections

Hard X-ray intensities with more than 100 keV energy were measured in the non-inductive high density plasma.