Advanced Fusion Research Center

黑田賢剛¹, Roger RAMAN², 長谷川真¹, 恩地拓己¹, 御手洗修³, 花田和明¹, 小野雅之⁴, Thomas JARBOE², Brian A. NELSON², 永田正義⁵, 出射浩¹, 池添竜也¹, John ROGERS², 川崎昌二¹, 永田貴大¹, 東島亜紀¹, 島袋 瞬¹, 新谷 一朗¹, Canbin Huang¹, 小島信一郎 ¹, 木谷彰宏¹, 村上貴洋¹, 中村一男¹, 高瀬雄一⁶, 村上定義⁷

¹九州大学,²ワシントン大学,³先進核融合・物理教育研究所, ⁴プリンストンプラズマ物理研究所,⁵兵庫県立大学,⁶東京大学,⁷京都大学

2019年10月3日 QUEST研究会

ワシントン大学とプリンストンプラズマ物理研究所(PPPL)との 国際共同研究の下、2016年からQUESTIこCHIを導入して実験を開始

NSTX配位

QUEST配位 (外側壁-バイアス電極間放電)

・新設計のQUEST電極配位において閉じ込め配位(磁気面)の形成を実証
・CHIとECHの組み合わせ効果の評価

初期実験結果(外側壁-バイアス電極間放電) 磁束発展の様子

安定なプラズマ着火と予想通りの磁束発展を観測

-SHU UNIVERSITY EXPERIMENT WITH TEADY-STATE SPHERICAL TOKAMAK

放電映像

1/525000 sec

Advanced Fusion Research Center

|初期実験(外側壁-バイアス電極間放電) |における結果

<u>得られた成果</u>

- ・ 安定なプラズマ着火を観測。
- PF条件に対応する磁束発展及びトロイダル電流駆動 を観測。

課題

- ・狭いFootprintの維持が困難。
 =>着火条件との折り合いなど
- 電流増倍率が低い(I_tor/I_inj ~1)

内側壁-バイアス電極間放電への変更

狙い; Footprintの狭小化と電流増倍率の増大化

電極カット及びセラミックカバー設置による外側壁 間との放電防止処置を実施

内側壁-バイアス電極間放電における 磁束発展の様子

-SHU UNIVERSITY EXPERIMENT WITH TEADY-STATE SPHERICAL TOKAMAN

放電映像

Advanced Fusion Research Center

内側壁-バイアス電極間放電における 磁東発展評価

Ref1

亚価	1
	_Т

	Ref1	条件1-2	条件1-3
PF3-1, 5-1	-3.1 kA	-2.3 kA	-2.0 kA
PF4-3	0.0 kA	0.0 kA	0.0 kA
PF2, PF6	-0.42 kA	-0.31 kA	-0.26 kA
Φ_inj	5.3 mWb	3.9 mWb	3.4 mWb
		74%	65%

磁束発展評価1 Ref1~条件1-3

磁束発展評価1 Ref1~条件1-3

40005,08,12

40005, 08, 12

磁束発展評価2 Ref2~条件2-3

磁束発展評価2 Ref2~条件2-3

磁束発展評価2条件2-3~条件2-5

条件2-3		条件2-4		条件2-5
Φ_inj = 3.4 mWb	=>	Φ_inj = 4.1 mWb	=>	Φ_inj = 4.8 mWb

磁束発展評価2 Ref2~条件2-5

40028, 35, 42, 44, 45

40028, 35, 42, 44, 45

磁束発展評価3 Ref3~条件3-3

磁束発展評価3 Ref3~条件3-3

Ref3		条件3-2		条件3-3
PF4-3= 0.5 kA	=>	PF4-3= 0.6 kA	=>	PF4-3= 0.7 kA

磁束発展評価3 Ref3~条件3-3

40061, 62, 63

40061, 62, 63

Advanced Fusion Research Center

外側壁-バイアス電極間から内側壁-バイアス電極間放電への変更

変更による改善

- ・磁束発展形状の適正化(狭いfootprintの維持)
- ・高い電流増倍率(I_tor/I_inj~10)の達成
- ・放電時間の増加(不要な入射電流の低減化)

磁束発展評価

・入射磁束量及び配位形状との関連性を観測

今後の予定

- ・CHI専用コイルの増設、ガス導入系統改善による評価
- ・閉磁気面の形成を狙う

